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ABSTRACT

The first step in a DNA microarray experiment is to define the biological question to be addressed and the
selection of an appropriate experimental design. In a second step samples are processed and hybridized to the
chips. Next, the fluorescent images are obtained and a processing step begins in which the images are analyzed,
the expression values assigned and mathematical-statistical methods suited to the goals of the study are applied.
Here a particular emphasis is made on the methodology used to quantify and analyze gene expression data. The
most frequently used programs are briefly described and working plans are proposed for some of the most
common experimental objectives. Additionally, we discuss and comment the applications of this technology in the
field of Oncology, where it has enabled the discovery and classification of new cancer subtypes, and has helped
to identify new therapeutic targets, as well as improving the prediction of disease stages.
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RESUMEN

Andlisis de datos de microarreglos de ADN. Parte lI: Cuantificacién y andlisis de la expresiéon génica. Los
experimentos de microarreglos de ADN constan de una primera etapa, en la que se define la pregunta biolégica
objeto de investigacién y se selecciona el disefio experimental que mejor responda a los objetivos. La segunda
etapa del experimento comienza una vez que las muestras se procesan e hibridan en los chips. Cuando se obtienen
las imagenes fluorescentes, se inicia la etapa de procesamiento, en la que se analizan las imagenes para asignar
los valores de expresién, y se aplican métodos estadistico-matematicos que permitan cumplir los objetivos de la
investigacién. En este articulo se enfatiza en la metodologia para la cuantificacién y el andlisis de los datos de
expresion. Se describen los programas més utilizados para estos andlisis y se proponen esquemas de trabajo para
acometer algunos de los objetivos mds frecuentes. Ademds, se comentan aplicaciones de esta tecnologia en
Oncologia, donde ha habido avances en cuanto a: la clasificacién de nuevos subtipos de cancer, la identificacién de

nuevos blancos terapéuticos y la prediccion de estadios de la enfermedad.

Palabras clave: Microarreglos de ADN, expresion de genes, cuantificacion, andlisis estadistico

Introduction

The availability of complete genome sequences has
marked the advent of genome wide high throughput
technologies that provide information on the different
levels of physiological regulation taking place in living
beings. These technologies, of which DNA microarrays
are a prominent example, typically generate large vo-
lumes of biological data that require the development
of customized information systems to cope with tasks
such as data collection, management and analysis. In
the specific case of DNA microarrays, the development
of statistical methods for the analysis of datasets with
a high number of variables but a limited number of
measurements has steadily gained importance as the
technology has matured and become widely used.
During the interpretation of the results from micro-
array experiments, and especially in studies focused
on the molecular basis of disease and other biological
phenomena, the statistical analysis of expression ma-
trices must be complemented with the study of other
available sources of information and biological on-
tology, such as databases for protein-protein inte-
ractions, transcriptional regulators and, in general,
functional annotation databases obtained through
either experimentation or predictive algorithms. Such
an integrated approach is already a fundamental part
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of the arsenal of Systems Biology [1]. Although some
applications are already available for the integration
and statistical analysis of this information [2], it is still a
challenge the development of statistical-mathematical
algorithms that can lead to the formulation of biological
hypotheses based on gene/protein interaction networks
linked to expression data.

In the first part of this paper we discuss matters
such as defining the biological hypothesis, experimen-
tal goals and design, which are essential for the data
obtained to be able to answer the scientific questions
posed by the researcher. The present part deals with
relevant methodological topics for the analysis of mi-
croarray data, which are of importance whether the
scientist is dealing with the results of their own expe-
riments or analyzing data from public repositories.

Quantification of gene expression

In DNA microarray experiments, once the samples
are hybridized, the chips are scanned and the corres-
ponding images are generated. The gene expression
data from each sample is obtained through image
analysis, which generates what is commonly known
as an expression matrix, with each row representing a
gene and each column corresponding to a sample.

1. Hwang D, Smith JJ, Leslie DM, Weston
AD, Rust AG, Ramsey S, et al. A data inte-
gration methodology for systems biology:
experimental verification. Proc Natl Acad
Sci USA 2005:102:17302-7.

2. Al-Shahrour F, Diaz-Uriarte R, Dopazo
J. FatiGO: a web tool for finding significant
associations of Gene Ontology terms with
groups of genes. Bioinformatics 2004; 20:
578-80.
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The initial analysis usually consists of transforming
the raw data contained in this matrix into normalized
and pre-processed data, which is then processed in
later stages using statistical methods. One of the cha-
llenges of microarray experiments is the collection,
management and analysis of these data.

Image analysis for the quantification of gene
expression

On reading each chip images are generated consisting
of matrices of 16-bit pixels, which have individual lu-
minescence values ranging from 0 to 65 535 (2'°-1).
The intensity value for each gene is not calculated from
an individual pixel, but rather from a set of pixels.
The steps taken to assign an intensity value to a gene
are:

Localization of the signal

This process is usually automatic. It locates the pixel
rectangle where the signal should be contained and
assigns the coordinates of this rectangle to the corres-
ponding gene.

Segmentation

This process classifies the pixels forming the image of
the chip as either signal or background. This is a very
important step, since the intensity value assigned to
each gene depends to a large extent on the differences
in luminescence between the signal and background
pixels. Although there are segmentation algorithms
that assume a circular shape for the signal (classified
as either fixed circle segmentation methods -assigning
a circle of the same diameter for all signals on the chip-
or adjustable circle segmentation methods, which use
individual pixel intensities to estimate a separate dia-
meter for each probe), they are considered to be un-
satisfactory due to the often irregular shape of the
signals. Therefore, the most widely used algorithms
use the individual luminescence values of the pixels
forming the signal to determine its contour [3, 4], re-
sulting in better and more accurate estimates of the
level of gene expression.

Calculation of the intensity (signal)

After locating the rectangle corresponding to each gene
on the chip and identifying the area corresponding to
the signal within this rectangle based on the segmen-
tation algorithms discussed above, the intensity of
the signal is calculated from the luminescence of the
pixels above that of the background.

Background correction

After the processes of localization, segmentation and
calculation of the intensity, the luminescence of back-
ground pixels from adjacent areas of the signal are also
analyzed and quantified in order to estimate the con-
tribution of non-specific, background interactions to
the calculated intensities and therefore, to subtract
this contribution from the gene expression values ob-
tained. There are different methods for this purpose,
differentiated mainly by whether they estimate a
common background correction for the complete sur-
face of the chip or a local correction coefficient for
each signal or for clusters of adjacent signals. Since
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background levels can and often do vary within a mi-
croarray, local correction methods have been largely
favored for this purpose [5, 6].

Signal exclusion criteria

During the process of calculating the intensity values,
the signals must be examined to detect inconsistencies
among their constituent pixels and to evaluate their
possible elimination from the dataset. For instance,
any signal with a high variability in the luminescence
of its pixels must be eliminated; this is commonly the
case for low-intensity signals which are close to back-
ground intensity.

Yang et al. demonstrated how in some cases the
use of background correction algorithms can actua-
Ily significantly worsen the accuracy, given that they
usually increase the variability of low-intensity sig-
nals while the different segmentation procedures
introduce low levels of variability into the resulting
precision [7]. Additionally, Wang et al. showed, by u-
sing a quality scoring function, that the values from
high quality signals were less variable than those from
low-quality ones, thus demonstrating how the inhe-
rent variability in measurements of intensity ratios is
inversely related to signal quality [8].

Storage of expression data

Several Laboratory Information Management Systems
(LIMS) custom-tailored for the storage and analysis
of microarray gene expression data have been de-
veloped (Table 1). These systems comply with the
guidelines of an international standard established
by the Microarray Gene Expression Data (MGED)
Society, known as MIAME (Minimum Information
About a Microarray Experiment) [9], based on struc-
tured tables for the storage of data from the samples,
the experimental conditions studied, and the ex-
pression values themselves. Additionally, there is an
increasing trend towards the incorporation of data
analysis as an integral part of these systems. BASE
(BioArray Software Environment, http://base.thep.lu.
se) [10], which is one of the most popular LIMS, is a
database server that contains the information on the
biomaterials, the primary expression data and images,
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Table 1. The most popular systems for the storage and management of microarray data

Available ULMS* Institute Database URL
management system
BASE (BioArray Oncology MySQL, PostgreSQL http:/ /www.lu .se/
Software Department, Lunds
Enviroment) University
MaxdSQL Microarray Oracle, MySQL, http: //www.bioinf.man.
(Manchester Array Bioinfo matics Group, PostgreSQL ac. uk/microarray/maxd/
Express Datab ase) Manchester U niversity
MADAM (MicroArray The Institute of MySQL http: //www tigr.org/
Data Manager) Genomic Research - software/tm 4/madam.html
TIGR
SMD (Stanford Stanford University Oracle, http://genome-

www5.stanford.edu/
MicroAmray/SMD /download/

Microarray LAD (The Longhom
Database) Array Data base) es una
impleme ntacién de SMD
en PostgreSQL
AmrayExpress EMBL-EBI Orcle

http ://www .ebi.ac.uk/
arrayexpress/

*Laboratory Information Management Systems.
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and also has facilities for the normalization, visuali-
zation and analysis of gene expression data.

There are several LIMS that also double as public
microarray data repositories. Among the most impor-
tant ones due to the volume of data and their constant
update are the SMD (Stanford Microarray Database,
http://genome-www5.stanford.edu/) [11, 12], pro-
viding access to more than 300 experiments, Array-
Express (http://www.ebi.ac.uk/ arrayexpress/) [13, 14]
from EMBL-EBI (European Molecular Biology Labo-
ratory-European Bioinformatics Institute), with more
than 1800 experiments, and GEO (Gene Expression
Omnibus, http://www.ncbi.nlm.nih.gov/geo/) [15, 16]
from NCBI (National Center for Biotechnology Infor-
mation), with more than 4900 public expression data
series. These databases attract the interest of resear-
chers not only because of the chance to analyze data
from individual experiments, but because of the oppor-
tunity they provide for studying global and specific
molecular mechanisms for diseases and other biologi-
cal phenomena through meta-analyses of microarray
data obtained from different experiments [17-19].

Pre-analysis: filtering, normalization and pre-
processing of expression data

After image analysis and intensity assignment it is
always necessary to transform and process the pri-
mary data, since these intensities not only reflect the
levels of MRNA expression but also contain biases
associated with variations during chip printing, sam-
ple labeling and other sources of variability. The pro-
cesses of filtering, normalizing and pre-processing the
data intend to remove these biases.

Data filtering

A first step in processing primary intensity data is to
eliminate the values that most probably arise from ex-
perimental errors. One of the criteria used for this is
the calculation of the coefficient of variation (CV) for
each gene (defined as the ratio of the standard devia-
tion (SD) and the mean intensity for multiple signals
from the same gene), filtering out any results above a
certain threshold. Another criterion for filtering out in-
valid data is to eliminate signals that are above the
threshold corresponding to over saturated values. It is
also recommended to visually inspect the images to de-
tect defects of the array such as scratches, fogs, edge
effects and bubbles, and eliminating the corresponding
intensities before the data normalization stage [20].

Normalization

The process of normalization must be the first trans-
formation applied to gene expression values and it is
an essential step before data analysis. This transfor-
mation attempts to minimize systematic errors arising
during the quantification of the hybridization of MRNA
samples in order to more easily identify biological
differences [21] and to be able to compare expression
levels between chips. Normalization is generally ap-
plied either within each chip or between multiple
chips, and therefore demands a careful selection of the
most appropriate method and variables or spatial re-
gions of the chip (gene set) to be used for data stan-
dardization.
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Set of genes to be used for normalization

In general, normalization methods assume that:

1) The expression levels of most genes changes and
the signals are normalized based on a restricted set of
genes with invariable expression between the experi-
mental conditions (reference genes), or:

2) There will not be changes in the expression for
most genes of the array between the different experi-
mental conditions; therefore the signals can be nor-
malized based on the intensities of all signals from the
chip [22, 23].

Methods based on the first assumption are used
generally when the array contains only a selection of
genes known to be associated to the biological problem
under study, e.g. genes related to a specific disease.
In this case it is possible to use a set of reference ge-
nes whose expression is previously known to be cons-
tant across the different experimental conditions, as
it is the case of genes for essential functions which
must always be expressed at similar levels, also known
as housekeeping genes. Another approach is to include
control probes from genes not expressed in the sam-
ple, as is the case of genes from evolutionarily distant
organisms, although this variant is not widely used.
Methods based on the second assumption, on the other
hand, are widespread when using chips with genomic
coverage. Additionally, Yang et al. [21] have propo-
sed other methods for normalization which separate
the area of the chip per printing groups and apply the
chosen method on a per-group basis, thus avoiding
edge effects between different printing groups in the
same chip.

Normalization methods

There are several normalization methods:

- Global or linear (applicable to cDNA and Affy-
metrix-type chips): The normalization factor is the
same for every gene in the chip.

- Intensity-dependent (applicable to cDNA and
Affymetrix-type chips): The normalization factor
depends on the intensity of each signal.

- Location-dependent (applicable to cDNA chips):
The normalization factor depends on the position of
each signal on the surface of the chip.

These methods have been extensively used for the
normalization of gene expression data [21, 24, 25] and
can be applied either within an array or between pairs
of arrays.

The selection of a normalization method depends
on the type of chip used for the microarray experiment.
As an example, let define R as the set of intensities for
the red signals and G as the set of intensities for the
green signals of a cDNA chip.

Here, the global, or linear method, assumes that
there is the same amount of RNA in the samples com-
pared, and they therefore contain the same number of
molecules. It also assumes that the probes printed on
the chip represent a random sample of the genes from
an organism. If these two assumptions hold true it
follows that the same number of labeled molecules
from each sample must hybridize to the array and, the-
refore, the total sum of intensities from all probes in
the array must be the same for each sample. Based on
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this simple assumptions a normalization factor k is
calculated by adding the intensities from both channels:

i=1
and the normalized expression ratio T’; for each probe
on the chip would be:
Ri_ 1 R

G,k G

T

This transformation is equivalent to subtracting a
constant from the logarithm of the expression ratio:

log. (T'i) = log: (Ti) - log: (k)

There are variants of this method depending on
whether the mean or the median of the intensities are
considered to be the same within each array or across all
arrays; it can also be applied to only a subset of genes
instead of all the genes in the chip. Kroll et al. performed
a comparative analysis of the methods of normaliza-
tion that are based on an intensity ratio factor [23],
studying different variants for the normalization factor
such as the mean of the expression of the set of refe-
rence genes; the sum, the mean, the median, the quar-
tile or percentile of the logarithms of all expression
values and the mean excluding the highest intensity
values; and concluded using the mean of the central
values of intensity as the factor after excluding 5 and
10% of the highest values is a simple and robust me-
thod for the normalization of this type of data. One
problem in these methods, however, is that they do
not take into account intensity and block effects which
have been described in other studies [26-28].

Dudoit et al. [24] suggested the use of a graph
constructed with the logarithm of the primary data:

M=log:(R/G) v.s A= % log, (R*G)

which is useful for the identification of signal noise
arising from differences in labeling efficiency. This is
known as an MA graph, because of the name of the
variables being charted.

If the same sample, labeled with both fluorophores,
is hybridized to the same chip, it is expected that the
value of log, (R/G) equals 0; however, in most cases
what is actually observed is a deviation from 0 both
for high and low intensities. Lowess (LOcally Weigh-
ted rEgression and Smoothing Scatterplots) [29] is a
normalization method that can eliminate these labeling-
specific biases relying on the intensity values. Lowess
can be used to estimate a function to adjust the values
of the MA-graph; this function will only be affected
by differentially expressed genes, which will therefore
behave as outliers in this case. By performing this nor-
malization, the following transformation is applied:

log,R/G —log,R/G - ¢ (A) = log, R/ k (A)*G

where A=log, V(R*G) and the values R’, G’ normalized
by lowess are transformed as follows:

G'=2°®™*G , R'=R
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This method can be applied to the whole chip or a
function can be estimated for each partition of the
chip.

Yang et al. [21] studied this intensity-dependent
effect by performing hybridizations in 30 cell lines,
constructing MA-graphs for each one and calculating
the standard deviation before and after a lowess
correction. This demonstrated the convenience of the
lowess method for intensity-dependent alterations.

On the other hand, Yang et al. [7] performed a wi-
der comparison by using cDNA microarray data and
including different normalization methods (global,
lowess based on all chip probes, lowess per chip per
printing block, lowess across every pair of chips with
reverse labeling -which is only used to eliminate fluo-
rophore biases in cDNA arrays- and a method of va-
riance regularization applied per chip, per printing
blocks and between chips), which showed that using
lowess on each chip per printing block yielded the
best results. This work also evidenced the need for
this type of normalization method, which -unlike glo-
bal methods- can eliminate biases that depend on
signal intensity and on the spatial location of the
probe over the surface of the chip.

The current general consensus for normalization is
to normalize each chip globally and with lowess per
printing group; adding a reversed labeling normaliza-
tion step when using two fluorophores. However, some
groups still search for improved normalization algo-
rithms that not only yield better results, but are based
on different biological hypotheses. For instance, Fan et
al. [30] presented a method based on a semi linear mo-
del, applied within the same chip, which estimates inten-
sity and block effects by using 100 replicates of the
same gene. In their method, the estimated values of the
effects are eliminated from all intensity values, follo-
wed then by a global normalization to correct for other
effects. Methods such as this are a useful alternative
when the biological premises of the lowess method
(that the expression of most genes remains constant or
that the number of up- or down -regulated genes is si-
milar within each printing block) are not valid.

Pre-processing of expression data

Once normalized, the expression values must undergo
a treatment called pre-processing, which consists of a
series of additional data transformations that attempts
to partially correct a number of problems that may re-
main in the experimental results. Some of these trans-
formations are:

Treatment of the replicates within each array

It is recommended to analyze and filter out inconsistent
replicates, followed by the calculation of the mean or
median expression values for each gene based on the
intensities of all its valid replicates in the array.

Filling missing or blank data

Missing values can appear in an expression matrix for
a number of reasons, including insufficient resolution
of the scanner, or problems with the image or the chip
itself. The most frequent solutions to deal with this
problem are to fill-in the missing data with the median
or the mean of the intensities for the corresponding
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gene or with weighted values for the k nearest neigh-
bors (KNN-Imputation); the latter variant is more ro-
bust [20]. Although the estimation of missing values
is a necessary step for the application of clustering
me-thods to identify groups of co-expressed genes or
samples, it is dispensable in other cases (e.g., when
using a t-test) and can in fact give misleading results
under those circumstances.

Filtering out flat patterns

It is common to filter out genes that maintain a constant
level of expression across all experimental conditions,
since keeping them within the dataset can bias the
results of later analyses, particularly when using clus-
tering algorithms [31]. This filtering takes advantage
of the fact that those genes usually have an expression
profile with a very low standard deviation, and is im-
plemented by visualizing all genes in the chip by stan-
dard deviation ranks, using the result to define an
standard deviation threshold, and then eliminating the
genes below this threshold.

Exploratory data analysis

The techniques of exploratory data analyses are used
to gather more detailed information about the avai-
lable data, identifying relationships between variables
without previous information on them and, occasiona-
Ily, reducing or selecting a subset of the variables best
suited for explaining and predicting the behavior of
the system. Many of the techniques for exploratory
data analysis fall within the field of descriptive statis-
tics, and are based on the use of univariate analyses
and the visualization of the distribution of the variables
together with the estimation of their mean, median
and standard deviation. During microarray studies it
can be useful to visualize histograms of the number of
genes per rank for each of these statistics. There are
also multivariate exploratory techniques such as Prin-
cipal Component Analysis [32, 33] that are even more
useful due to the high number of variables that can be
examined, which enable the construction of compo-
nents as linear orthogonal combinations of the origi-
nal variables. Each principal component accounts for
a defined percentage of the variability observed in the
system under study (preferably, the first two compo-
nents should explain 80% or more of this variability)
and the process leads to a coefficient that represents
the weighting of each variable on each component.
The most important variables, or genes, will therefo-
re be those with the highest absolute values for the
coefficients of the first and second component; if most
of the variability is explained by the first component,
later analysis can then be confined to the variables
with the highest first-component coefficients.

For clarity, let us illustrate the use of this technique
for the analysis of the 50 genes with the highest diffe-
rence in expression levels between the healthy and
tumorous tissues from prostate cancer, taken from
the study of Lapointe et al. [34]. Figure 1 shows the
values of each sample in a scatter plot where the axes
represent the values of the first and second principal
components. Both components account for 80% of
the variability of the system under study (76.7 and
3.3%, respectively), and it is easy to notice how they
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Projection of the samples in the factor plane (1 x 2)
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Figure 1. Projection of the values from the 103 samples onto the plane formed by the axes of the first and
second principal components or factors. These components are obtained by the application of a Principal
Component Analysis on the 50 genes with the most pronounced changes in expression between the
classes formed by healthy tissue samples and prostate tumor samples. These two components separate
the two experimental groups under study. The chart shown above is the output from program Stat 6.1,
showing in each axis the percentage of the total variability accounted for by each factor (76.74% for the
first component and 3.33% for the second). The expression data were taken from the public study of

Lapointe et al. [34].

separate the sample into two groups. This high per-
centage makes it possible to link these two principal
components to the most evident phenomena in the
analyzed data while at the same time selecting the ge-
nes with the highest coefficients in both components
for later analyses. In this particular example, the first
component is associated to a phenomenon of gene
repression (the 30 genes with the highest coefficients)
and the second component is associated with over-
expression (two genes with the highest coefficients).
One of the overexpressed genes is AMACR, known to
exhibit a high activity in prostate tumors [35].

Statistical-mathematical analyses
according to the goals of the
experiment

There is a close relationship between the goals of the
experiment and the most suitable statistical method
to be used [36] (Table 2). Statistical methods for the
analysis of microarray data can be classified as super-
vised or unsupervised [37]. Supervised methods re-
quire the definition of classes or experimental groups.
These include methods oriented towards the identi-
fication of genes with differential expression patterns
between defined classes (comparison methods) and
methods geared for the prediction of class membership
(prediction methods). The later case requires a pre-
vious step of selection of the variables. Unsupervised
methods (clustering methods) are mainly used for the
identification of genes with similar expression patterns
without the knowledge of their classification in a
particular class (Figure 2).
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Selection of significant genes: supervised
methods

Class comparison methods are required to identify
the genes whose expression profile changes signifi-
cantly across the different experimental conditions.
These are supervised learning methods that require
the input of the group or experimental condition to
which each sample belongs and as results identify
differentially expressed genes between these defined
experimental groups or conditions.

In general, the problem can be reduced to the se-
lection of an adequate statistical test and the compu-
tation of p values for the samples. The choice of a
statistical test depends on the number of conditions
to be compared. The use of the fold change FC:

FC:Iogz(E), FC>2 or FC<-2
X2

is not recommended as a measure of differential ex-
pression, since in this case the differences in variance
dominate the analysis.

The most accepted method for comparing two con-
ditions is a modified t-test [24, 38] such as the one des-
cribed by Tusher et al. [39], implemented in the SAM
software (Significance Analysis of Microarrays, http://
wwwstat.stanford.edu/~tibs/SAM/); in addition, there
are SAM versions currently available for the compa-
rison of multiple experimental conditions. In general,
the modifications to the t-test are applied to the deno-
minator. Tusher et al. propose a d-test where the modi-
fication to the t-test [40] consists of adding an s, value,
such that for each gene it is possible to calculate:

_Xi-X
6%+ S

where s, > 0, ¢ is the variability of the expression
among the classes, and X; - X, represents the difference
between the expression means of the gene between
both classes.

There are different methods available for testing the
hypothesis of differential expression [37, 38]: 1) Those
assuming that the data follows a normal distribution,
such as the t-test for two groups or the F test for mul-
tiple conditions, 2) Non-parametric tests such as the
Wilcoxon’s for two conditions, the Kruskal-Wallis’s
for multiple comparisons, which do not require a nor-
mal distribution of the experimental data since they
are based on the use of sum ranks, or others less known
non-parametric statistics[41-43], and 3) Procedures
based on Bayesian statistics [44-46]. The diagram in
figure 3 shows a proposal for the use of these statistic
tests, where the assays are grouped according to their
requirements for a normal distribution of the data and
the number of classes to which they can be applied. In
any case, the results obtained after the application of
the relevant method is a list of genes, ranked according
to the value of the selected statistical test for diffe-
rential expression.

It should also be stressed that this type of experi-
ment usually makes statistic inferences on thousands
of variables (genes) and, therefore, the results demand
very small p values (in the order of 10 to 10*). A ve-
ry popular alternative is the calculation of un-adjusted
p values, for which the use of resampling algorithms
is recommended [47] since microarray data often
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Table 2. Summary of the most frequently used statistical methodologies, according

to the objective of the experiment

Objective of
the experiment

Most frequently used
statistical methods

Reasons for the selection

t -test, F-test, Wilcoxon,
Kruskal Wallis, SAM

Class comparison

The F-test can compare two or more experimental
conditions, with better accuracy than non-parametric

tests (Wikoxon, Kruskal Wallis) in microarray data

kNN, D LDA, Naive Baye s,
QDA, LDA, LOCLDA, SYM

Class prediction

Although kNN is a simple method, comparison stud ies
of dis criminant methods have consistently singled out

kNN as the best performer for microamray data
according to Dudoit et al. [52]

Classs discovery k-means, SOM, HCL, SOTA

SOTA is a clustering method combining SOM and

HCL. It contains an implementation of a stop ping
criterion for the division of clusters based on the
estimation of variability within the cluster. A sp ecific
design for microarray data develo ped by Herrero et
al. [82] is also known as SOTArray

*The methods recommended by the authors are shown in bold typeface, with the reasons b ehind their

choice in the third column.

do not follow a normal distribution. If the researcher
wishes to account for any dependencies among the
observed variables -which is a frequent event in func-
tionally related genes- it is also necessary to compute
p values which have been adjusted for multiple hypo-
thesis tests with permutations [27].

Lastly, the genes which are differentially expressed
are selected from the gene list, based on whether or
not the relevant statistic test has a value above the
chosen threshold or, for adjusted p values, under the
chosen threshold. This stage also makes use of con-
trols, such as the estimation of the false discovery
rate (FDR) and/or the family-wise error rate (FWER),
with different modifications for the calculation of
the expected proportion of false positives or false
negatives for microarray data [27, 48-50].

Searching for a molecular signature:
supervised methods

Class prediction methods are needed to find a mole-
cular signature (i.e., a reduced set of genes whose
expression profiles allow the classification of the
sample), which are also supervised learning metho-
dologies. In this case the goal is to find a multivariate
predictor that can assign an unknown sample or indi-
vidual to a specific class. The comparative study pu-
blished by Dudoit et al. [51] revealed that the most
accurate method for this purpose is that known as kNN
(k Nearest Neighbors) [52], which yielded the smallest
number of classification errors.

Methods

p /\
/I\\Supervised

|Classes)

&

‘ Selection of the variables ‘

N
\

Molecular signature

Significant genes

Unsupervised
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40. Welch BL. The generalization of ‘stu-
dents’ problem when several different
population variances are involved. Bio-
metrika 1947;34:28-35.

41. Troyanskaya OG, Garber ME, Brown
PO, Botstein D, Altman RB. Nonparametric
methods for identifying differentially
expressed genes in microarray data. Bio-
informatics 2002;18:1454-61.

42. Zhao Y, Pan W. Modified nonpara-
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by relative entropy.) Theor Biol 2005;
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44. Newton MA, Kendziorski CM, Rich-
mond CS, Blattner FR, Tsui KW. On diffe-
rential variability of expression ratios:
improving statistical inference about ge-
ne expression changes from microarray
data. J Comput Biol 2001;8:37-52.

Clustering

Co-expressed genes and/or
arrays with similar
expression profiles

Figure 2. Diagram depicting the general workflow followed during the statistical analysis of microarray
data. Unless un-supervised methods are used, experiments of class comparison or prediction require the
a priori definition of the experimental group (class) to which the sample belongs.
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Class comparison

/\

| Normal dist. | |Non-porome1ric| | Normal dist. | |Non-porome1ric|

- Kruskal-Wallis

- Wilcoxon

Assignment of p values,
unadijusted p values
and adjusted p values

|

Selection of a threshold for adjusted p
values by controlling the FDR and/or FWER

!

Significant genes

Figure 3. Proposed workflow for statistical analysis focused on the discovery of genes with statistically significant expression
changes during the comparison of two or more experimental conditions. Some statistical tests assume a normal distribution of the
data; non-parametric tests make no such assumptions. Regardless of the specific test, a p value is computed and the samples are
permuted between the groups under study for obtaining an adjusted p values. Finally, the adjusted p values are computed using
multiple hypotheses testing with permutations. The genes with a adjusted p values below a specific threshold will be considered to
have statistically significant changes in expression between the compared classes. The selection of a specific threshold value takes

into account the FDR/FWER ratios.

Before developing the predictor, it is necessary to
select its constituent variables (genes). This selection
is necessary because it can be reasonably assumed
that only a subset of the genes under evaluation will
be useful for distinguishing among classes. A method
very frequently used for this selection is to choose
the relevant genes according to the statistical signifi-
cance of univariate tests (t test, F test or Wilcoxon’s
rank test) for differences among classes. Those ge-
nes with statistically significant differences are selec-
ted for their inclusion in a multivariate model. The
threshold employed for testing statistical significance
is important, since a more stringent criterion results in
a simpler model with fewer variables, but runs the risk
of omitting important genes; additionally, the com-
plete procedure generally requires large sample sizes
in order to identify enough relevant genes for the
construction of an accurate predictor. One common
strategy is to perform a screening with a low-strin-
gency significance threshold, estimating the rate of
erroneous classification for the resulting models by
crossing-over validation. Other alternatives that have
been used are multiple hypothesis testing and Prin-
cipal Component Analysis during the variable selection
stage [53, 54].

Clustering into gene expression profiles:
unsupervised methods

Clustering methods, in the context of microarray data,
are used for constructing groups of genes or samples
with similar expression profiles, using a measurement
of distance [51]. The most frequently used distance
metrics are the Euclidean distance and Pearson’s co-
rrelation coefficient. In the case of hierarchical clus-
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tering methods, it is also necessary to define a method
for estimating the distances between gene clusters [55].

There is no need for an a priori definition of the
group, class or experimental condition of each sample
included in the analysis when using clustering me-
thods; in fact, clustering algorithms can suggest a new
clustering plan for the samples based on the similarity
between the expression profiles of the genes under
study. These methods, when applied to expression da-
ta, are useful for identifying clusters of co-expressed
genes and distinct patterns of gene expression in the
samples without the need for predefined classes that
supervise the analysis [56, 57].

The clustering method most frequently used for
microarray data is known as hierarchical clustering.
This unsupervised methodology derives a series of
partitions for the data; in this case, each data point is
formed by the expression profile of a sample or gene.
There are in turn different variants of hierarchical
clustering, such as agglomerative and divisive clus-
tering; the latter is better if the data are to be divided
into a few groups of a few elements each. In any case,
the end result of these methods is a tree-like structure
known as a dendrogram.

There are alternatives to hierarchical clustering me-
thods. One of the most widespread alternatives is the
k-Means technique, which has the disadvantage of
having to know beforehand the number of groups in-
to which the data will be classified. However, the
estimation of k is a known problem that arises whene-
ver it is necessary to map a data structure to a group
structure, and it has been intensively studied in the
context of gene expression studies [58, 59]. A widely
used criterion proposes the selection of k as the lo-
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west number of groups yielding only small variations
in the y-axis of a FOM (Figure of Merit) chart [60],
and there are other techniques based on the evaluation
of group stability [61].

One of the most common mistakes during the ana-
lysis of microarray data is to use clustering analyses
to solve problems of class prediction and comparison
[62]. These analyses do not yield valid, statistically
significant quantitative information on what genes are
differentially expressed between classes, and should
only be used in this case as an exploratory technique.
Class prediction and comparison are better approached
with supervised methods, as described in the preceding
sections.

Available software for microarray data
analysis

Bioconductor: This is an international free software
project for the analysis and interpretation of genomic
data, written in the R statistical language (http://www.
r-project.org) and including a large number of com-
putational algorithms for the analysis of gene expre-
ssion [63]. The Bioconductor project (http://www.
bioconductor.org) has a number of packages that
together offer a wide range of statistical applications
for several types of genomic analyses: ctc [64] for
clustering expression values, multtest [27, 65] and
maanova [66] for multiple comparisons of experimen-
tal conditions, marray [67], containing loess/lowess
functions for local regression and samr [68] (an im-
plementation of the SAM method for detecting diffe-
rential expression) among others.

MeV (The Institute for Genomic Research, USA):
This is one of the most popular programs for mi-
croarray data analyses because of the large variety of
mathematical methods it includes [69]. This is a free
software application that is easy to install, written in
Java and showing a user-friendly interface. It has
options for performing basic data transformations,
filtering, normalization and clustering of genes or ex-
perimental conditions using different measurements
of distance and methods such as k-Means [70], HCL
(Hierarchical Clustering) [55], SOM (Self Organizing
Maps) [71, 72] and SOTA (Self Organizing Tree
Algorithm) [73, 74]. It also contains the t-test, ANOVA
[75] and SAM with FDR control for the discovery of
genes differentially expressed between experimental
conditions (The latter is one of the discovery tests
most frequently used in the literature). MeV also has
other features, such as RN (Relevance Networks) [76],
which uses a gene entry with its expression profile to
draw out its most related gene networks, using a
minimal coefficient for node correlation defined by
the user. The software is available at http://www.tigr.
org/software/tm4/.

GEPAS (Centro de Investigacion Principe Felipe,
Valencia): This is a web application for the analysis of
gene expression profiles [77-79] implemented as a
series of interconnected modules, which performs pre-
processing, normalization (using the DNMAD appli-
cation for cDNA chips or Expresso for Affymetrix
systems) [80], the determination of differential ex-
pression with T-Rex [78, 81] and clustering algorithms
(SOM, Som Tree [82], SOTArray). GEPAS can also
be used to construct a class predictor with methods
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such as SVM (Support Vector Machine) [83], DLDA
(Diagonal Lineal Discriminant Analysis), k NN [51]
and others as implemented in the Prophet tool [84].
In order to facilitate the interpretation and extrac-
tion of biological information from clusters of related
genes, GEPAS also contains FatiGO [85] and Fatigo+
[86, 87], which can be used to associate these genes
to GO (Gene Ontology) [88] terms and to the KEGG
database [89] of metabolic pathways. The FatiScan
application [90] allows for the detection of blocks of
functionally related genes (GO, KEGG) in gene lists
sorted according to the results of an analysis of
differential expression or any other theoretical or
experimental criterion (http://gepas.bioinfo.cipf.es/).

BRB-ArrayTools (National Cancer Institute-NClI,
USA): This is a professional, integrated package for
the visualization and statistical analysis of gene
expression data which is installed as a Microsoft Excel
plug-in [91]. It contains almost all the features men-
tioned above, although it emphasizes topics related to
experimental design (http://linus.nci.nih.gov/BRB-
ArrayTools.html).

Functional annotation of the results through
data mining techniques

Once the analyses above have been performed (a stage
that constitutes only the initial part of the analysis of
a microarray experiment) the researcher obtains clus-
ters of related genes, which have to be linked to other
sources of public information. By approaching the
data as a whole, using a comprehensive analysis for
their interpretation that takes into account their sta-
tistical significance, the researcher can devise the hy-
potheses that must be verified experimentally. The
most accepted procedure for establishing this link is
through gene/protein networks in systems that inte-
grate different sources of biological data, thus being
able to observe the behavior of clusters of functionally
related genes and their relationships instead of focu-
sing on individual genetic units.

Dopazo J [92] considers that there are currently two
separate generations of methods for the analysis and
interpretation of the data obtained from high-through-
put technologies. The more traditional is known as
“threshold-based functional analysis” and is usually im-
plemented as a two-stage process, where first the ge-
nes of interest are selected according to a threshold of
statistical significance, and then their frequency is de-
termined in biologically relevant terms. The other
generation, “threshold-free functional analysis”, is cu-
rrently still under active development and analyzes the
behavior of clusters of functionally related genes wi-
thout previously filtering the results. In order to show
the capabilities of this second technological genera-
tion, Dopazo used the data from a gene expression
study on diabetes mellitus performed by Mootha et
al. [93], where the application of a t-test to compare
two groups (17 controls with normal glucose tolerance
vs. 26 cases, 8 with reduced glucose tolerance and 18
with type 2 diabetes mellitus) did not yield differentia-
Ily expressed genes using a significance threshold of
0.05. The author used the T-rex program from the
GEPAS package and did not find any case of differential
expression. However, when the segmentation test im-
plemented in the FatiScan application, as well as other
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second generation programs such as GSEA [93, 94],
PAGE [95] and SAFE [96] were applied, they all iden-
tified a common set of genes which, although lacking
statistical significance by more traditional criteria, we-
re known to be linked to diabetes. These results eviden-
ce the superiority of the approach of Systems Biology
over preceding approaches, although the development
of, and research on these new methods are far from
finished.

Verification of the results

The first part of this review lists the main sources of
variability and error for microarray experiments [97].
The simultaneous examination of thousands of genes
in each experiment inevitably leads to a higher than
usual number of false positives during statistical
analysis. Therefore, it is necessary to use other expe-
rimental techniques to validate and confirm the pre-
sence of a differential gene expression profile among
the genes identified with microarrays.

One of the most sensitive experimental techniques
to detect and quantify mRNA in tissue samples is the
use of quantitative reverse transcription-real time
polymerase chain reaction (Q-RT-PCR). This makes
it one of the most robust [98, 99] and frequently used
methods [100-103] to verify the expression of genes
derived from statistical analysis of microarray data.
Other analytic techniques, such as Northern blotting
and Ribonuclease Protection Assay, have also been
used for this purpose [104].

Applications of the technology in the field
of Oncology

Examples of class discovery

- Tamayo et al. used microarrays to study gene ex-
pression in HL-60 cells and, with the help of SOM [72],
obtained biologically relevant gene clusters which we-
re involved in the processes of cellular differentiation.

- Alizadeh et al. discovered new lymphoma sub-
types with clustering methods [57].

- Bittner et al. found a subclassification within
melanomas which had not been identified morpho-
logically by other techniques [105]. The subset was
obtained by mathematical analysis of gene expression
data from a series of samples. Most importantly, the
genes whose expression profile was distinctive to the
subset were differentially expressed in invasive stage
melanomas.

Examples of class comparison

- Prostate cancer has been intensively studied with
DNA microarrays. These studies fall into four funda-
mental groups: those comparing normal to tumoral
tissue samples [34, 106-108], those comparing sam-
ples from benign prostatic hyperplasia to tumor cells
[109], those examining the effects of clinical treat-
ments, e.g. samples before and after using Doxazosin
[110], and those studying the molecular evolution of
prostate cancers refractory to treatment [111, 112],
although all these experiments share the common goal
of finding genes with differential expression profiles
within different experimental conditions and discove-
ring co-expressed genes. If the experiments that have
analyzed normal vs. tumoral tissue are screened for
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overlapping results, it can be seen that the expression
profile of genes such as CAMKK2, FASN, SIM2,
CAV2, LIM and AMACR has behaved similarly in
many of them, showing statistically significant diffe-
rences to the compared groups.

Examples of class prediction

- Breast cancer: Van’t Veer et al. reported the
identification of a set of 70 genes that can be used as
predictors for metastasis, obtained from the exa-
mination of the gene expression profiles of primary
breast cancer tumors from 117 young patients [113].
An initial analysis of the expression of 25 000 hu-
man genes showed that there were 5000 genes with
statistically significant differences when comparing
the tumor samples to a reference sample. These genes
were then processed with an unsupervised bidimen-
sional hierarchical clustering algorithm, which cluste-
red the tumors according to the similarity of their
expression profiles for these 5000 genes and cluste-
red in turn the genes according to the similarity of
their expression profiles in the set of analyzed tu-
mors. As a result, the analysis clustered the tumors in
two main groups, one dominated by patients with a
negative prognosis for the next 5 years and another
composed predominantly of patients with a positi-
ve prognosis in the same period, evidencing the pre-
dictive power of the analysis of gene expression
profiles. Additionally, when the gene clusters were
cross-analyzed against the histopathological data,
the results matched the results published in the lite-
rature. Next, 78 patients with negative lymph nodes
were selected to search for prognostic signature in
their expression profiles; after five years 44 of these
patients were disease-free and the remaining 34
patients had developed metastases. With the aim of
classifying patients with either good or bad prognosis
a three-stage supervised method was implemented.
In a first step, 231 out of the 5000 candidate genes
were selected, based on the correlation of their ex-
pression profiles with disease progress (correlation
coefficient <-0.3 or > 0.3), then these 231 genes were
sorted according to their correlation coefficient and
lastly, the predictor was constructed by the sequen-
tial addition of sets of the first 5 genes from the top
of the sorted list, estimating the classification error
by cross-validation for each iteration. The best accu-
racy (83%) was obtained with a set of 70 genes which
were then proposed as the predictor. Upon applying
this predictor to the original sample, only 13 patients
were classified erroneously, 5 of them from the good
prognosis group and 8 from the bad prognosis group.
Later studies comparing the survival of a group of
295 patients with the results of the predictor [114]
confirmed these results.

- Lung cancer: Chen et al. [115] found a molecular
signature composed of 5 genes (ERBB3, LCK, DUSP6,
STAT1, MMD) associated to survival from NSCLC
(Non-Small Cell Lung Cancer). Samples from 125 pa-
tients afflicted with this cancer were studied in arrays
containing probes for 672 genes which had been shown
to be associated to invasiveness in a previous experi-
ment that compared normal vs. NSCLC tissue [116].
The genes with a coefficient of variation below 3%
were excluded from the analysis, thus selecting 485
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out of the 672 original genes, and the 125 samples
were randomly assigned to a training set or to a test
set. In order to find genes associated with death or the
recurrence of the disease, the expression values were
transformed, assigning codes according to the intensity
levels with the purpose of performing a regression
analysis. The hazard ratios of a univariate regression
showed the associations of the expression level of each
gene with survival, with hazard ratios below one
associated to ‘protective’ genes and hazard ratios above
one associated to ‘risk’ genes. A signature of 16 genes
significantly correlated with survival was selected; from
these, 5 genes predicted the survival of the patients
with 96% accuracy. The mean survival time for the
101 patients evaluated during the search for the
predictor was 20 months, and the patients classified
as high-risk according to the molecular signature had a
mean survival time below those with a low-risk signature
(20 vs. 40 months, p <0.001). This molecular signature
was validated with another 60 patients of Chinese
origin and 86 western patients from a public repository
of microarray data for NSCLC. The presence of a high-
risk signature on the tumors was associated with an
increased risk of recurrence and lower survival.

Conclusions

This paper describes and reviews the stages for the
quantification and statistical analysis of data from
microarray experiments. The coming years will pro-
bably witness the development of new algorithms
and statistical methods allowing for a better
interpretation of the information provided by mi-
croarray experiments, in addition to a smoother in-
tegration and complementation with other high
throughput technologies operating at genomic sca-
les. It is also expected that solutions to some of the
known problems of microarray experimentation, such
as the large size of the expression matrices (commonly
containing thousands of rows -genes- versus hun-
dreds of columns -observations, samples), and the
integration with data from microarray experiments
performed with differing technologies and controls,
will be solved as well. The development of statistical-
mathematical methods will no doubt parallel the
technological development of the methodology and
the future appearance of new high-throughput
techniques. A thorough understanding of the tech-
nology, therefore, will be a basic requirement in ob-
taining results with a high scientific impact.
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